How to Convert A String to Pandas Datetime?

3 minutes read

To convert a string to a pandas datetime object, you can use the pd.to_datetime() function provided by the pandas library. This function takes a string representing a date and time in a specific format and converts it into a pandas datetime object.


For example, if you have a string "2021-05-20 08:00:00" representing a date and time in the format 'YYYY-MM-DD HH:MM:SS', you can convert it to a pandas datetime object by using the following code:

1
2
3
4
5
import pandas as pd

date_string = "2021-05-20 08:00:00"
datetime_object = pd.to_datetime(date_string)
print(datetime_object)


This will output a pandas datetime object representing the date and time specified in the string. It is important to note that the string must be in a valid date and time format recognized by pandas for the conversion to be successful.


What is the origin parameter in the pd.to_datetime() function used for?

The origin parameter in the pd.to_datetime() function is used to specify the reference date from which to calculate the times in the input data.


If the input data contains timestamps which are specified as integer or float values representing the number of seconds since a specific reference date, the origin parameter can be used to specify that reference date. By default, the reference date is set to the Unix epoch (January 1, 1970), but it can be changed using the origin parameter.


For example, if the input data contains timestamps specified as the number of seconds since January 1, 2000, you can use the origin='2000-01-01' parameter to convert these values into datetime objects correctly.


How to convert a string with days to pandas datetime?

You can convert a string with days to pandas datetime using the pd.to_datetime() function. Here's an example:

1
2
3
4
5
6
7
8
9
import pandas as pd

# string with days
days_string = "10 days"

# convert string to datetime
days_datetime = pd.to_datetime(days_string, format="%d days")

print(days_datetime)


In this example, the pd.to_datetime() function is used to convert the string "10 days" to a pandas datetime object. The format="%d days" parameter tells the function to interpret the string as a number of days.


How to convert a string to pandas datetime using the pd.to_datetime() function?

To convert a string to pandas datetime using the pd.to_datetime() function, you can simply pass the string as an argument to the function. Here is an example:

1
2
3
4
5
6
import pandas as pd

date_str = "2021-10-20"
date_datetime = pd.to_datetime(date_str)

print(date_datetime)


This will output:

1
Timestamp('2021-10-20 00:00:00')


You can also convert a list of strings to pandas datetime by passing the list as an argument to pd.to_datetime(). Here is an example:

1
2
3
4
date_list = ["2021-10-20", "2021-10-21", "2021-10-22"]
date_datetime_list = pd.to_datetime(date_list)

print(date_datetime_list)


This will output:

1
DatetimeIndex(['2021-10-20', '2021-10-21', '2021-10-22'], dtype='datetime64[ns]', freq=None)


In this way, you can convert a string or list of strings to pandas datetime using the pd.to_datetime() function.


What is the day parameter in the pd.to_datetime() function used for?

The day parameter in the pd.to_datetime() function is used to specify a single day of the month for the resulting date. It allows for more control over the date that is being created or parsed.


What is the utc parameter in the pd.to_datetime() function used for?

The utc parameter in the pd.to_datetime() function is used to specify whether the input datetime strings are in UTC time zone or not. By setting the utc parameter to True, the function will interpret the input datetime strings as being in UTC time zone. This can be helpful for converting datetime strings from different time zones to a standardized time zone for further processing and analysis.

Facebook Twitter LinkedIn Telegram Whatsapp

Related Posts:

To format a datetime column in pandas, you can first convert the column to a datetime data type using the pd.to_datetime() function. Once the column has been converted, you can use the dt.strftime() method to specify the format in which you want the datetime v...
To convert xls files for use in pandas, you can use the pandas library in Python. You can use the read_excel() method provided by pandas to read the xls file and load it into a pandas DataFrame. You can specify the sheet name, header row, and other parameters ...
To convert JSON data to a DataFrame in pandas, you can use the pd.read_json() function provided by the pandas library. This function allows you to read JSON data from various sources and convert it into a pandas DataFrame. You can specify the JSON data as a fi...
To parse an XML response in a string to a pandas dataframe, you can use the xml.etree.ElementTree module in Python. Firstly, you need to parse the XML string using ElementTree.fromstring() to convert it into an ElementTree object.Then, you can iterate through ...
To check if a time-series belongs to last year using pandas, you can use the following steps:Convert the time-series index to a datetime object if it is not already in that format.Use the pd.Timestamp.now().year function to get the current year.Subtract 1 from...